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Abstract We analyze earlier applications of perturbation theory by the moment
method (also called inner product method) to anharmonic oscillators. For concrete-
ness we focus on two-dimensional models with symmetry C4v and C2v and reveal the
reason why some of those earlier treatments proved unsuitable for the calculation of
the perturbation corrections for some excited states. Point-group symmetry enables
one to predict which states require special treatment.

1 Introduction

Many years ago there was great interest in perturbation theory without wavefunction.
Fernández and Castro [1] developed an approach for multidimensional nonseparable
problems that was based on the recurrence relations of the moments of the wave-
function instead of the wavefunction itself. They applied it to the Zeeman effect in
Hydrogen and to the Hydrogen molecular ion. Austin [2] resorted to this approach in
order to obtain the coefficients of the renormalized perturbation series for the lowest
states of the Zeeman effect in Hydrogen and Arteca et al. [3] carried out a similar
calculation by means of an order-dependent mapping. Fernández and Castro [4] also
applied this moment perturbation theory (MPT) to the Hydrogen in parallel mag-
netic and electric fields and outlined its application to multidimensional anharmonic
oscillators.

Sometime later Killingbeck et al. [5] rediscovered the approach and baptized it
inner-product method. They applied it to one-dimensional anharmonic oscillators and
later Killingbeck and Jones [6] to two dimensional ones. Fernández et al. [7] developed
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the MPT in a more general way and showed the general conditions that the recurrence
relations for the moments should satisfy in order to be suitable for a successful per-
turbation calculation.

After that, there has been many applications of the MPT to a variety of quantum-
mechanical models [8–23] and Fernández [24] reviewed some of them in a compre-
hensive way. It is worth noting that after so many years of application of the MPT
[5,6,8–12,17–20,23] some authors never acknowledged the existence of the seminal
articles that first introduced the MPT [1] and its combination with the renormalized
series [2,3].

The simplest two-dimensional model first treated by Killingbeck and Jones [6] and
Witwit [9] is H = p2

x + p2
y + x2 + y2 + λ

(
ax4 + by4 + 2cx2 y2

)
. Their calculations

were restricted to a = b because “The potential is non-separable but shows a high
symmetry; this cuts down the amount of computation required, although the more
general anisotropic case can also be treated by the method” [6] and “The inner product
method deals with more general parameter values, but still requires a = b since the
equations used exploits this symmetry to reduce computation” [9]. Fernández and
Ogilvie [16] showed that the application of the MPT to the case a �= b is not that
trivial because the moments of order zero for some pairs of states coupled by the
perturbation satisfy quadratic, instead of linear, equations (see also Fernández [24]).
This is the reason why Killingbeck and Jones [6] and Witwit [9] were unable to
apply the perturbation approach to such non-symmetric anharmonic interactions. In
fact, Fernández and Morales [15] had previously overcome a similar difficulty in the
treatment of the Zeeman effect in Hydrogen.

Most of the applications of the MPT to anharmonic oscillators took into account the
symmetry of the eigenfunctions (see, for example, [6,9,21,22]). However, such treat-
ments of symmetry look rather rudimentary when compared with the more rigorous
approach carried out, for example, by Pullen and Edmonds [25,26]. Those enlight-
ening papers motivated the application of point-group symmetry (PGS) to several
multidimensional non-Hermitean anharmonic oscillators that led to most interesting
conclusions [27–30].

The purpose of this paper is to show why the simple symmetry arguments invoked
by Killingbeck and Jones [6] and Witwit [9] were insufficient to solve the Schrödinger
equation for the multidimensional anharmonic oscillators by means of the MPT, except
for some particular states. For simplicity we focus on the two-dimensional anharmonic
oscillator shown above but the same ideas apply to all the other models studied so
far.

In Sect. 2 we outline the main ideas of PGS [31,32] that we use in Sect. 3 to
classify the different cases given by general choices of potential parameters. In Sect.
4 we analyze the symmetry of the eigenfunctions for the case a = b and discuss the
effect of the symmetry of the anharmonic interaction on the perturbation corrections
to the eigenvalues. We also outline the effect of symmetry on the behaviour of the
moments of the wavefunction. We calculate the energy eigenvalues for a particular
model and compare our results with those of Killingbeck and Jones [6] and Witwit
[9]. In Sect. 5 we carry out a similar analysis for the case a �= b. Finally, in Sect. 6
we summarize the main results of the paper and generalize the conclusions drawn in
the preceding sections.
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2 Point-group symmetry

In what follows we summarize a few results of group theory that will be useful through-
out this paper.

The set of unitary transformations Ui , i = 1, 2, . . . , h that leave a given Hamil-
tonian operator H invariant Ui HU †

i = H form a group with respect to the composition
UiU j [31,32]. The invariance is obviously equivalent to [H,Ui ] = 0. Clearly, if ψ
is an eigenfunction of H with eigenvalue E then Uiψ is also eigenfunction with the
same eigenvalue as follows from HUiψ = Ui Hψ = EUiψ .

The eigenfunctions of H are bases for the irreducible representations (irreps) of the
point group G of H and can therefore be classified according to them [31,32]. Group
theory gives us projection operators P S such that for any arbitrary function f P S f is
basis for the irreducible representation S unless P S f = 0. The projection operators
are given by

P S = lS

h

h∑

i=1

χ S(Ui )
∗Ui , (1)

where lS is the dimension of the irreducible representation S, h is the order of the
group and χ S(Ui ) is the character of the operation Ui for the irrep S [31,32].

It is well known that there is a one-to-one correspondence between the unitary
operators Ui and unitary matrices Mi such that [31]

Ui f (x) = f (M†
i x). (2)

Any projection operator P is self-adjoint P† = P and idempotent P2 = P . If ψ S

is an eigenfunction of H and is basis for the irrep S then

〈
F

∣∣∣ψ S
〉
=

〈
F

∣∣∣P Sψ S
〉
=

〈
P S F

∣∣∣ψ S
〉
. (3)

This brief introduction to group theory will prove sufficient for all the discussions in
the subsequent sections.

3 Symmetry of the two-dimensional oscillator

As indicated in the introduction we will discuss the application of the MPT to the
two-dimensional anharmonic oscillator

H = p2
x + p2

y + x2 + y2 + λ
(

ax4 + by4 + 2cx2 y2
)
, (4)

where pq = −i d
dq . We have the following cases:

Case 0: c = 0. This problem is separable in cartesian coordinates and was chosen
by Killingbeck and Jones [6] to test their algorithms. It is not relevant for present
discussion.
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Case 1: a = b = c. The potential depends only on r2 = x2+y2 and the Schrödinger
equation is therefore separable in spherical coordinates. This case was also a bench-
mark for Killingbeck and Jones [6] but it is of no interest for present purposes.

Case 2: a = b �= c. This case was studied by both Killingbeck and Jones [6] and
Witwit [9] by means of the MPT. We will discuss it in the present paper. A suitable
point group is C4v with the following unitary operations

E : (x, y) → (x, y)

C4 : (x, y) → (y,−x)

C3
4 : (x, y) → (−y, x)

C2 : (x, y) → (−x,−y)

σv1 : (x, y) → (x,−y)

σv2 : (x, y) → (−x, y)

σd1 : (x, y) → (y, x)

σd2 : (x, y) → (−y,−x) (5)

where Cn is a rotation by an angle 2π/n and σ denotes a reflection [31,32]. The
irreps are A1, A2, B1, B2 and E ; the first four ones one-dimensional and the last one
two-dimensional.

Case 3: a �= b. This case was treated by Fernández and Ogilvie [16] and Radicioni
et al. [21,22] and was avoided by Killingbeck and Jones [6] and Witwit [9]. The point
group is C2v with operations

E : (x, y) → (x, y)

C2 : (x, y) → (−x,−y)

σv1 : (x, y) → (x,−y)

σv2 : (x, y) → (−x, y) (6)

and only one-dimensional irreps A1, A2, B1 and B2. It is an Abelian group.

4 Perturbation theory for Case 2

The eigenfunctions and eigenvalues of the unperturbed oscillator H0 = H(λ = 0) are

H0ϕm,N−m = E (0)N ϕm,N−m, m = 0, 1, . . . , N

E (0)N = 2(N + 1), N = 0, 1, . . . , (7)

where
ϕm,n(x, y) = φm(x)φn(y), (8)

and φm(q) is an eigenfunction of HH O = p2
q + q2. The N -th unperturbed eigenvalue

is (N + 1)-fold degenerate and the perturbation reduces this degeneracy because the
symmetry of H is smaller than that of H0.
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The perturbation splits the set of degenerate eigenfunctions of H0 with eigenvalue
E (0)2K , K = 0, 1, . . ., into sets of eigenfunctions of H of symmetry A1, B1, A2 and

B2 and those with eigenvalue E (0)2K+1 into sets of eigenfunctions of symmetry E . As a
result, the eigenfunctions of H can be written as linear combinations of the complete
set of eigenfunctions of H0 in the following way:

ψ A1 =
∞∑

m=0

∞∑

n=m

cA1
mnϕ

+
2m,2n

ψ B1 =
∞∑

m=0

∞∑

n=m+1

cB1
mnϕ

−
2m,2n

ψ A2 =
∞∑

m=0

∞∑

n=m+1

cA2
mnϕ

−
2m+1,2n+1

ψ B2 =
∞∑

m=0

∞∑

n=m

cB2
mnϕ

+
2m+1,2n+1

ψ E
eo =

∞∑

m=0

∞∑

n=0

cE
mnϕ2m,2n+1

ψ E
oe =

∞∑

m=0

∞∑

n=0

cE
nmϕ2m+1,2n, (9)

where

ϕ+
m,n =

√
2 − δmn

2

(
ϕm,n + ϕn,m

)
, ϕ−

m,n = 1√
2

(
ϕm,n − ϕn,m

)
. (10)

The subscripts o and e stand for even and odd, respectively and refer to the behaviour
of ψ E

eo and ψ E
oe with respect to the reflection planes σv1 and σv2. The derivation of

these symmetry-adapted basis functions by means of the projection operators (1) is
straightforward. With respect to the coefficients of the eigenfunctions of symmetry
E note that if ψ E

eo is an eigenfunction of H then σd1ψ
E
eo = ψ E

oe is also a linearly
independent eigenfunction with the same eigenvalue; therefore, {ψ E

eo, ψ
E
oe} is a basis

for this irrep.
The MPT is based on recurrence relations for the moments

Im,n = 〈
fm,n |ψ 〉

, fm,n = xm yne−α(x2+y2), m, n = 0, 1, . . . , (11)

where ψ is an eigenfunction of H . Therefore, according to (3) we have

Im,n =
〈

fm,n

∣∣
∣ψ S

〉
=

〈
P S fm,n

∣∣
∣ψ S

〉
, (12)

for the irrep S. Obviously, Im,n = 0 if fm,n does not have the proper symmetry. A
straightforward calculation shows that
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I A1
2m,2n = 1

2

〈(
f2m,2n + f2n,2m

) ∣∣∣ψ A1
〉

I B1
2m,2n = 1

2

〈(
f2m,2n − f2n,2m

) ∣∣∣ψ B1
〉

I A2
2m+1,2n+1 = 1

2

〈(
f2m+1,2n+1 − f2n+1,2m+1

) ∣∣
∣ψ A2

〉

I B2
2m+1,2n+1 = 1

2

〈(
f2m+1,2n+1 + f2n+1,2m+1

) ∣∣∣ψ B2
〉

I E
2m,2n+1 =

〈
f2m,2n+1

∣
∣∣ψ E

eo

〉

I E
2m+1,2n =

〈
f2m+1,2n

∣∣∣ψ E
oe

〉
. (13)

We appreciate that I A1
2m,2n = I A1

2n,2m , I B1
2m,2n = −I B1

2n,2m , etc. is the kind of boundary
conditions taken into account in earlier MPT treatments of the anharmonic oscillators
(see, for example, [6,9,21,22]).

In order to illustrate the effect of the symmetry of the perturbation on the correc-
tions of first order to the energy we simply diagonalize the matrix representation of
the perturbation H′ in the basis set of degenerate eigenfunctions of H0. Obviously,
since functions of different symmetry do not mix it is preferable (and advisable) to
diagonalize the matrices H′(S) for every one of the irreps S.

The case N = 0 is trivial but we include it here for completeness. There is only
one function and the correction of first order is

〈
ϕ00

∣∣H ′∣∣ϕ00
〉 = 3a + c

2
. (14)

When N = 1 we have two functions of symmetry E that lead to a diagonal matrix:

H′(E) =
(

3(3a+c)
2 0
0 3(3a+c)

2

)

, (15)

because ϕ0,1 and ϕ1,0 have different eigenvalues with respect to the operators σv1 and
σv2.

When N = 2 the function ϕ11 is B2 and the functions {ϕ20, ϕ02} are linear combi-
nations of functions of symmetry A1 and B1. We have

〈
ϕ11

∣∣H ′∣∣ϕ11
〉 = 3 (5a + 3c)

2
, (16)

for the former and

H′ =
( 21a+5c

2 c
c 21a+5c

2

)
, (17)

for the latter. This matrix is not diagonal; however if we use the symmetry-adapted
functions {ϕ+

20, ϕ
−
20} we obtain a diagonal one:
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H′ =
(

7(3a+c)
2 0
0 3(7a+c)

2

)

(18)

A different situation arises for N = 3 because the four degenerate unperturbed
eigenfunctions can be grouped into two pairs of symmetry E : {ϕ3,0, ϕ1,2} and
{ϕ0,3, ϕ2,1}. Both lead to identical matrix representations of the perturbation:

H′(E) =
( 39a+7c

2

√
3c√

3c 3(9a+5c)
2

)
(19)

with eigenvalues

E (1) = 11 (3a + c)± 2
√

9a2 − 12ac + 7c2

2
. (20)

We cannot make this matrix diagonal by means of symmetry operations; therefore
the inner product method as applied by Killingbeck and Jones [6] and Witwit [9]
is expected to fail, and in fact they entirely omitted the treatment of these energy
levels. By a judicious manipulation of the moment recurrence relations one can derive
a quadratic equation for one of the moments of order zero in order to obtain the
corrections to the energy [16,21,22,24].

From the results above we conclude that the first energy levels corrected to first
order are given by

E1A1 = 2 + 3a + c

2
λ+ . . .

E1E = 4 + 3 (3a + c)

2
λ+ . . .

E1B2 = 6 + 3(5a + 3c)

2
λ+ . . .

E2A1 = 6 + 7 (3a + c)

2
λ+ . . .

E1B1 = 6 + 3 (7a + c)

2
λ+ . . .

E2E = 8 + 11 (3a + c)− 2
√

9a2 − 12ac + 7c2

2
λ+ . . .

E3E = 8 + 11 (3a + c)+ 2
√

9a2 − 12ac + 7c2

2
λ+ . . . (21)

where the subscript j S indicates that the symmetry S appears for the j-th time. The
level order may change with the relative magnitudes of the potential parameters.

Killingbeck and Jones [6] and Witwit [9] calculated some of the eigenvalues cor-
responding to N = 0, 1, 2, 4, respectively. Note that they omitted the four states that
stem from N = 3 and three of the five states that come from N = 4 [which do
not appear in equation (21)]. The reason is that their mathematical treatment of the
moment recurrence relations did not enable them to obtain suitable working equations
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Fig. 1 First eigenvalues of the anharmonic oscillator (4) (Case 2). Solid lines and points indicate present and
Witwit’s results [9], respectively

for such cases. They chose examples where the perturbation corrections of first order
are linear functions of the potential parameters, while for N = 3, for example, they
are nonlinear as shown above. In the case N = 3 one expects quadratic equations for
the moments of order zero as shown by Fernández and Ogilvie [16] and Radicioni et
al. [21,22] (see also Fernández [24]) for the Case 3 discussed in the following section.

In order to illustrate the omission of states mentioned above we calculated the
eigenvalues of the anharmonic oscillator with a = b = 0, c = 1 and 0 ≤ λ ≤ 1
and compared them with those reported by Witwit [9] (Killingbeck and Jones [6] also
showed some results). Figure 1 clearly shows that those authors omitted 7 of the 15
states that come from N = 0, 1, 2, 3, 4. In order to obtain the eigenvalues displayed
in that figure we resorted to the Rayleigh–Ritz variational method in the Krylov space
spanned by the set of non-orthogonal functions Ω S

n = HnΩ S for each irrep S. For
the present problem suitable reference functions Ω S are given by

Ω A1 = e−α(x2+y2)

ΩB1 = (x2 − y2)e−α(x2+y2)

Ω A2 = (xy3 − x3 y)e−α(x2+y2)

ΩB2 = xye−α(x2+y2)

ΩE
oe = xe−α(x2+y2)

ΩE
eo = ye−α(x2+y2), (22)

where α > 0 can be chosen in order to get the greatest rate of convergence. Here we
simply chose α = 1 and matrices of dimension 20 × 20 because great accuracy is not
required.

In order to facilitate the comparison of the results and the interpretation of Fig. 1
in what follows we list the labels used in the present paper and in the ones of those
authors:
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N = 0 → 1A1 → (0, 0, e)

N = 1 → 1E → (0, 1,mixed), (1, 0,mixed)

N = 2 →
⎧
⎨

⎩

1B1 → (0, 2, o)
2A1 → (0, 2, e)
1B2 → (1, 1, e)

N = 3 →
{

2E → omitted
3E → omitted

N = 4 →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3A1 → omitted
2B1 → omitted
1A2 → (1, 3, o)
2B2 → (1, 3, e)
4A1 → omitted

. (23)

Killingbeck and Jones [6] mentioned problems with some excited states. They
briefly referred to the coupling of the states ϕ1,2 and ϕ3,0 but did not show any equation
that could overcome the difficulty. On the other hand, Witwit [9] never considered this
situation at all.

5 Perturbation theory for Case 3

When a �= b the perturbation splits the set of degenerate eigenfunctions of H0 with
eigenvalue E (0)2K , K = 0, 1, . . ., into sets of eigenfunctions of H of symmetry A1,

and A2 and those with eigenvalue E (0)2K+1 into sets of eigenfunctions of symmetry
B1 and B2. The eigenfunctions of H can be written as linear combinations of the
unperturbed eigenfunctions in the following way:

ψ A1 =
∞∑

m=0

∞∑

n=0

cA1
mnϕ2m,2n

ψ A2 =
∞∑

m=0

∞∑

n=0

cA2
mnϕ2m+1,2n+1

ψ B1 =
∞∑

m=0

∞∑

n=0

cB1
mnϕ2m+1,2n

ψ B2 =
∞∑

m=0

∞∑

n=0

cB2
mnϕ2m,2n+1. (24)

As in the preceding case we apply straightforward perturbation theory of first order
beginning with the trivial case N = 0:

〈
ϕ00

∣∣H ′∣∣ϕ00
〉 = 3a + 3b + 2c

4
. (25)
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When N = 1 the two functions exhibit symmetry B1 and B2 and the perturbation
matrix is diagonal

H′ =
(

3(5a+b+2c)
4 0
0 3(a+5b+2c)

4

)

. (26)

Of the three functions for N = 2 two exhibit symmetry A1 and the remaining one
symmetry A2. The matrix for the former is not diagonal

H′(A1) =
( 3a+39b+10c

4 c
c 39a+3b+10c

4

)
, (27)

and has eigenvalues

E (1) = 21a + 21b + 10c ± 2
√

81a2 − 162ab + 81b2 + 4c2

4
. (28)

This matrix cannot be brought into a diagonal form by means of symmetry operations.
On the other hand, for the symmetry A2 we simply have

〈
ϕ11

∣∣H ′∣∣ϕ11
〉 = 3 (5a + 5b + 6c)

4
(29)

Thus, the first eigenvalues corrected to first order are:

E1A1 = 2 + 3a + 3b + 2c

4
λ+ . . .

E1B1 = 4 + 3 (5a + b + 2c)

4
λ+ . . .

E1B2 = 4 + 3 (a + 5b + 2c)

4
λ+ . . .

E2A1 = 6 + 21a + 21b + 10c − 2
√

81a2 − 162ab + 81b2 + 4c2

4
λ+ . . .

E3A1 = 6 + 21a + 21b + 10c − 2
√

81a2 − 162ab + 81b2 + 4c2

4
λ+ . . .

E1A2 = 6 + 3 (5a + 5b + 6c)

4
λ+ . . . (30)

In this case the inner product method as applied by Killingbeck and Jones [6] and
Witwit [9] begins to be unsuitable at N = 2 because it is not expected to yield the
states A1 (although, it is known to be successful for the remaining state A2 [24]). In
order to obtain the perturbation corrections for E2A1 and E3A1 one has to manipulate
the moment recurrence relations and derive a quadratic expression for one of the
moments of order zero as shown by Fernández and Ogilvie [16] and Radicioni et al.
[21,22] (see also Fernández [24]).
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6 Conclusions

The aim of this paper is the discussion of the application of the MPT (or inner product
method) to anharmonic oscillators. For concreteness in the preceding sections we
focused on the simple two-dimensional model (4) but other cases can be treated in
the same way. We have shown that PGS is extremely useful for understanding the
way in which the perturbation affects the states of the unperturbed model and the
boundary and initial conditions that one should consider during the manipulation of
the moment recurrence relations. In particular we were interested in the determination
of the conditions under which the application of the inner product method in the way
proposed by Killingbeck and Jones [6] and Witwit [9] is successful. The conclusion of
our analysis is that such an approach is expected to fail for some excited states of the
anharmonic oscillator (4) for the Cases 2 and 3 discussed in sects. 4 and 5, respectively.
The particular results derived there can be generalized in the following way: suppose
that χn, j , j = 1, 2, . . . , ν are degenerate eigenfunctions of H0 with eigenvalue E (0)n
adapted to the symmetry S of the point group G of H . If the dimension lS of S is smaller
than ν then the application of the inner product approach proposed by Killingbeck and
Jones [6] and Witwit [9] is expected to fail. In this case one has to manipulate the
recurrence relations for the moments in order to derive a polynomial function of one
of the moments of order zero. Each of the roots of this polynomial will lead to the
correction to the energy of each of the states coupled by the perturbation. For example,
the states stemming from N = 3 in Case 2 lead to two quadratic equations from which
we obtain the perturbation corrections for the energy levels E2E and E3E . It is not
difficult to verify that more complex situations appear for greater values of N . The
Case 3 was not treated by Killingbeck and Jones [6] and Witwit [9] but Fernández
and Ogilvie [16] and Radicioni et al. [21,22] (see also Fernández [24]) showed how
to obtain quadratic polynomial equations for the two states A1 coming from N = 2.
PGS predicts that for N = 3 we should have two quadratic equations that yield the
perturbation corrections for two states of symmetry B1 and two states of symmetry
B2.
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